

RANKING OF DODECAGONAL FUZZY NUMBERS FOR SOLVING MULTI OBJECTIVE FUZZY LINEAR PROGRAMMING PROBLEM WITH SIMPLEX METHOD AND GRAPHICAL METHOD

\author{

- J. Jon Arockiaraj *
}
- N. Sivasankari **

Abstract

In this paper, a ranking procedure based on Dodecagonal Fuzzy numbers, is applied to a Multi - Objective Linear Programming Problem (MOLPP) with fuzzy coefficients. By this ranking method any Multi Objective Fuzzy Linear Programming Problem (MOFLPP) can be converted into a crisp value problem to get an optimal solution. This ranking procedure serves as an efficient method wherein a numerical example is taken.

Keywords: Ranking, Dodecagonal Fuzzy Numbers, MOFLPP, Simplex Method, Graphical Method, α - Level Set.

INTRODUCTION

Ranking fuzzy number is used in decision - making process in an economic environment. In an organization various activities such as planning, execution, and other process takes place continuously. This requires careful observation of various parameters which are all in uncertain in nature due the competitive business environment globally. In fuzzy environment ranking fuzzy numbers is a very important decision making procedure.

The idea of fuzzy set was first proposed by Bellman and Zadeh [1], as a mean of handling uncertainty that is due to imprecision rather than randomness. The concept of fuzzy linear programming (FLP) was first introduced by Tanaka [8] et al. Zimmerman [2] introduced fuzzy linear programming in fuzzy environment.

Multi-objective linear programming was introduced by Zelenly. Lai Y.J - Hawng C.L considered MOLPP
with all parameters having a triangular possibility distribution. They used an auxiliary model and it was solved by MOLPP. Zimmerman applied their approach to vector maximum problem by transforming MOFLP problem to a single objective linear programming problem.

Qiu-PengGu, and Bing-Yuan Cao solved fuzzy linear programming based on the representation theorem and on fuzzy number ranking method. In particular, the most convenient methods are based on the concept of comparison of fuzzy numbers by the use ranking function.

PRELIMINARIES

Definition

If X is a universe of discourse and x be any particular element of X , then a fuzzy set A defined on X me written as,

[^0]$\tilde{\mathrm{A}}=\left\{\left(\mathrm{x}, \mu_{\tilde{A}}(\mathrm{x})\right): \mathrm{x} \in \mathrm{X}\right\}$
The membership function of a fuzzy set $\tilde{\mathrm{A}}$ is denoted by $\mu_{\tilde{A}}$, i.e., $\mu_{\AA}: \mathrm{X} \rightarrow[0,1]$
The membership function of a fuzzy set \tilde{A} has the form, $\tilde{A}: \mathrm{X} \rightarrow[0,1]$

Fuzzy Number

A Fuzzy set \tilde{A} of the real line R with membership function
$\mu_{\hat{A}}(\mathrm{x}): \mathrm{R} \rightarrow[0,1]$ is called fuzzy number if
i) A must be normal and convex fuzzy set
ii) the support of \hat{A}, must be bounded
iii) α_{A} must be a closed interval for every $\alpha \in[0,1]$

Support

The support of a fuzzy set $\tilde{A}, S(\tilde{A})$, is the crisp set of all $x \in X$ such that,
$\mathbf{S}(\tilde{\mathbf{A}})=\boldsymbol{\mu}_{\tilde{\mathrm{A}}}(\mathbf{x})>\mathbf{0}$

α - Cut set or α - Level set:

The α - Cut set of a fuzzy set \tilde{A} of the set X is the following crisp set given
$\widetilde{A} a=\left\{x \in X: \mu_{\hat{A}}(x) \geq \alpha\right.$

Normal Fuzzy Set

A Fuzzy set \tilde{A} of a set X is said to be a normal fuzzy set iff
$\boldsymbol{\mu}_{\hat{A}}(\mathbf{x})=\mathbf{1}$ for at least one $\mathrm{x} \in \mathrm{X}$

DODECAGONAL FUZZY NUMBERS

A fuzzy number Ã is a Dodecagonal Fuzzy Number (DoFN) denoted by

$$
\tilde{\mathrm{A}}=\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \mathrm{a}_{5}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{a}_{8}, \mathrm{a}_{9}, \mathrm{a}_{10}, a_{11}, a_{12}\right)
$$

Where $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \mathrm{a}_{5}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{a}_{8}, \mathrm{a}_{9}, \mathrm{a}_{10}, \mathrm{a}_{11}, \mathrm{a}_{12}$ are real numbers and its membership function is given below:

$$
\mu_{\tilde{A}}(x)=\left\{\begin{array}{ll}
0 & x \leq a_{1} \\
k_{1}\left(\frac{x-a_{1}}{a_{2}-a_{1}}\right) & a_{1} \leq x \leq a_{2} \\
k_{1} & a_{2} \leq x \leq a_{3} \\
k_{1}+\left(k_{2}-k_{1}\right)\left(\frac{x-a_{3}}{a_{4}-a_{3}}\right) & a_{2} \leq x \leq a_{3} \\
k_{2} & a_{4} \leq x \leq a_{5} \\
k_{2}+\left(1-k_{2}\right)\left(\frac{x-a_{5}}{a_{6}-a_{5}}\right) & a_{5} \leq x \leq a_{6} \\
1 & a_{6} \leq x \leq a_{7} \\
k_{2}+\left(1-k_{2}\right)\left(\frac{a_{8}-x}{a_{8}-a_{7}}\right) & a_{7} \leq x \leq a_{8} \\
k_{2} & a_{8} \leq x \leq a_{9} \\
k_{1}+\left(k_{2}-k_{1}\right)\left(\frac{a_{10}-x}{a_{10}-a_{9}}\right) & a_{9} \leq x \leq a_{10} \\
k_{1} & a_{10} \leq x \leq a_{11} \\
k_{1}\left(\frac{a_{12}-x}{a_{12}-a_{11}}\right) & a_{11} \leq x \leq a_{12} \\
0 & a_{12} \leq x
\end{array}\right\}
$$

Where $0<\mathrm{k}_{1}<\mathrm{k}_{2}<1$

Figure: 9.1. Graphical representation of a dodecagonal fuzzy number for $\mathrm{x} \in[0,1]$

Arithmetic Operations on Dodecagonal Fuzzy Numbers

Let $\tilde{A}{ }_{\sim}^{D}=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}, a_{12}\right)$ and $\widetilde{\mathrm{B}} \mathrm{Do}=\left(\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}, \mathrm{~b}_{4}, \mathrm{~b}_{5}, \mathrm{~b}_{6}, \mathrm{~b}_{7}, \mathrm{~b}_{8}, \mathrm{~b}_{9}, \mathrm{~b}_{10}, \mathrm{~b}_{11}, \mathrm{~b}_{12}\right)$ be two Dodecagonal Fuzzy Numbers, then

i) Addition

$\tilde{\mathrm{A}}_{\mathrm{Do}}(+) \widetilde{\mathrm{B}}_{\mathrm{Do}}=\left(\mathrm{a}_{1}+\mathrm{b}_{1}, \mathrm{a}_{2}+\mathrm{b}_{2}, \mathrm{a}_{3}+\mathrm{b}_{3}, \mathrm{a}_{4}+\mathrm{b}_{4}, \mathrm{a}_{5}+\mathrm{b}_{5}\right.$ $a_{6}+b_{6}$,

$$
\left.\mathrm{a}_{7}+\mathrm{b}_{7,} \mathrm{a}_{8}+\mathrm{b}_{8,} \mathrm{a}_{9}+\mathrm{b}_{9,} \mathrm{a}_{10}+\mathrm{b}_{10}, \mathrm{a}_{11}+\mathrm{b}_{11}, \mathrm{a}_{12}+\mathrm{b}_{12}\right)
$$

ii) Subtraction

$\tilde{\mathrm{A}}_{\mathrm{Do}}(-) \widetilde{\mathrm{B}}_{\mathrm{Do}_{0}}=\left(\mathrm{a}_{1}-\mathrm{b}_{1}, \mathrm{a}_{2}-\mathrm{b}_{2}, \mathrm{a}_{3}-\mathrm{b}_{3}, \mathrm{a}_{4}-\mathrm{b}_{4}, \mathrm{a}_{5}-\mathrm{b}_{5}, \mathrm{a}_{6}-\right.$ b_{6},

$$
\left.a_{7}-b_{7,} a_{8}-b_{8,} a_{9}-b_{9,} a_{10}-b_{10,} a_{11}-b_{11,} a_{12}-b_{12}\right)
$$

iii) Multiplication

$\tilde{\mathrm{A}}_{\mathrm{Do}}(*) \widetilde{\mathrm{B}}_{\mathrm{Do}}=\left(\mathrm{a}_{1} * \mathrm{~b}_{1,} \mathrm{a}_{2} * \mathrm{~b}_{2}, \mathrm{a}_{3} * \mathrm{~b}_{3,} \mathrm{a}_{4} * \mathrm{~b}_{4,} \mathrm{a}_{5} * \mathrm{~b}_{5}\right.$, $\mathrm{a}_{6} * \mathrm{~b}_{6}$

$$
\left.a_{7} * b_{7,} a_{8} * b_{8,} a_{9} * b_{9,} a_{10} * b_{10,} a_{11} * b_{11,} a_{12} * b_{12}\right)
$$

iv) Division

$\tilde{\mathrm{A}}_{\mathrm{Do}}(\div) \widetilde{\mathrm{B}}_{\mathrm{Do}}=\left(\mathrm{a}_{1} \div \mathrm{b}_{1,}, \mathrm{a}_{2} \div \mathrm{b}_{2,} \mathrm{a}_{3} \div \mathrm{b}_{3,} \mathrm{a}_{4} \div \mathrm{b}_{4,} \mathrm{a}_{5} \div \mathrm{b}_{5}\right.$, $a_{6} \div b_{6}$

$$
\left.\mathrm{a}_{7} \div \mathrm{b}_{7,} \mathrm{a}_{8} \div \mathrm{b}_{8,} \mathrm{a}_{9} \div \mathrm{b}_{9,} \mathrm{a}_{10} \div \mathrm{b}_{10}, \mathrm{a}_{11} \div \mathrm{b}_{11}, \mathrm{a}_{12} \div \mathrm{b}_{12}\right)
$$

Ranking of Dodecagonal Fuzzy Numbers

A number of approaches have been proposed for the ranking of fuzzy numbers.

In this paper for a dodecagonal fuzzy number $\tilde{A}_{\text {Do }}$ $=\left(a_{1,} a_{2,} a_{3,}, a_{4}, a_{5}, a_{6}, a_{7,} a_{8,}, a_{9}, a_{10,} a_{11}, a_{12}\right)$ a ranking method is devised based on the following formula,
$\mathbf{R}\left(\tilde{\mathbf{A}}_{\text {Do }}\right)=\left(\begin{array}{l}2\left(a_{1}+a_{6}+a_{7}+a_{12}\right)+ \\ 6\left(a_{2}+a_{3}+a_{4}+a_{9}+a_{10}+a_{11}\right) \\ +5\left(a_{5}+a_{8}\right) \\ 54\end{array}\right)\left(\frac{25}{18}\right)$
Let $\tilde{A}_{D o}=\left(a_{1,}, a_{2,}, a_{3,}, a_{4}, a_{5,}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}, a_{12}\right)$ and
$\widetilde{B}_{D_{0}}=\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}, b_{9}, b_{10,}, b_{11}, b_{12}\right)$ be two
Dodecagonal Fuzzy Numbers, then
$\tilde{\mathrm{A}}_{\mathrm{Do}} \approx \widetilde{\mathrm{B}}_{\mathrm{Do}} \mathrm{R}\left(\tilde{\mathrm{A}}_{\mathrm{Do}}\right)=\mathrm{R}\left(\widetilde{\mathrm{B}}_{\mathrm{Do}}\right)$
$\tilde{\mathrm{A}}_{\mathrm{Do}} \geq \widetilde{\mathrm{B}}{ }_{\mathrm{Do}} \quad \mathrm{R}\left(\tilde{\mathrm{A}}_{\mathrm{Do}}\right) \geq \mathrm{R}\left(\widetilde{\mathrm{B}}_{\mathrm{Do}}\right)$

$$
\tilde{\mathrm{A}}_{\mathrm{D}_{0}} \leq \widetilde{\mathrm{B}}_{\mathrm{Do}_{0}} \mathrm{R}\left(\tilde{\mathrm{~A}}_{\mathrm{D}_{0}}\right) \leq \mathrm{R}\left(\widetilde{\mathrm{~B}}_{\mathrm{D}_{0}}\right)
$$

METHOD OF SOLVING MULTI
 OBJECTIVE FUZZY LINEAR PROGRAMMING PROBLEM

This paper we discuss a multi - objective fuzzy linear programming problem in constraints conditions with fuzzy coefficients.

$$
\begin{aligned}
& \operatorname{Maximize} Z_{1}=f_{1} y \\
& \text { Minimize } Z_{2}=f_{2} y
\end{aligned}
$$

Subject to

$$
\tilde{\mathrm{A}}_{\mathrm{Do}} \mathrm{X} \leq \overline{\mathrm{g}}, \mathrm{X} \geq 0
$$

Where $\mathrm{f}_{\mathrm{ij}}=\left(\mathrm{f}_{\mathrm{i} 1}, \mathrm{f}_{\mathrm{i} 2}, \ldots . ., \mathrm{f}_{\mathrm{in}}\right)$ is an n - dimensional crisp row vector,
$\tilde{\mathrm{A}}_{\mathrm{Do}}=\overline{\mathrm{a}}_{\mathrm{ij}}$ is an $\mathrm{m} \times \mathrm{n}$ fuzzy matrix,
$\bar{g}=\left(g_{1}, g_{2}, \ldots, g_{m}\right)^{T}$ is an $m-$ dimensional fuzzy line vector and
$\mathrm{X}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \ldots . .\right)^{\mathrm{T}}$ is an $\mathrm{n}-$ dimensional decision variable vector.

We now consider a bi - objective fuzzy linear programming problem with constraints having fuzzy coefficients is given by

$$
\begin{aligned}
& \operatorname{Maximize} Z_{1}=f_{11} x_{1}+f_{12} x_{2}+\ldots .+f_{1 n} x_{n} \\
& \operatorname{Minimize} Z_{2}=f_{11} x_{1}+f_{12} x_{2}+\ldots .+f_{1 n} x_{n}
\end{aligned}
$$

Subject to

$$
\begin{aligned}
& \overline{\mathrm{a}}_{\mathrm{i} 1} \mathrm{x}_{1}+\overline{\mathrm{a}}_{\mathrm{i} 2} \mathrm{x}_{2}+\ldots \ldots+\overline{\mathrm{a}}_{\mathrm{in}} \mathrm{x}_{\mathrm{n}} \leq \overline{\mathrm{g}}_{\mathrm{i}} \\
& \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{\mathrm{n}} \geq 0, \mathrm{i}=1,2,3, \ldots, \mathrm{~m}
\end{aligned}
$$

where fuzzy numbers are dodecagonal, where

$$
\begin{aligned}
& \overline{\mathrm{a}}_{\mathrm{i} 1}=\overline{\mathrm{a}}_{\mathrm{i} 11}, \overline{\mathrm{a}}_{\mathrm{i} 12}, \overline{\mathrm{a}}_{\mathrm{i} 13}, \overline{\mathrm{a}}_{\mathrm{i} 14}, \overline{\mathrm{a}}_{\mathrm{i} 11}, \overline{\mathrm{a}}_{\mathrm{i} 16}, \overline{\mathrm{a}}_{\mathrm{i} 17}, \overline{\mathrm{a}}_{\mathrm{i} 18}, \overline{\mathrm{a}}_{\mathrm{i} 19}, \overline{\mathrm{a}}_{\mathrm{i} 110}, \overline{\mathrm{a}}_{\mathrm{i} 111}, \overline{\mathrm{a}}_{\mathrm{i} 112} \\
& \bar{a}_{i 2}=\bar{a}_{i 21}, \bar{a}_{i 22}, \bar{a}_{i 23}, \bar{a}_{i 24}, \bar{a}_{\mathrm{i} 25}, \ldots \ldots, \bar{a}_{\mathrm{i} 212} \\
& \overline{\mathrm{a}}_{\text {in }}=\overline{\mathrm{a}}_{\text {in } 1}, \overline{\mathrm{a}}_{\mathrm{in} 2}, \ldots \ldots, \overline{\mathrm{a}}_{\text {in } 8}, \overline{\mathrm{a}}_{\text {in } 9}, \overline{\mathrm{a}}_{\text {in } 10}, \overline{\mathrm{a}}_{\text {in11 }}, \overline{\mathrm{a}}_{\text {in12 }} \\
& \overline{\mathrm{g}}=\overline{\mathrm{g}}_{\mathrm{i} 1}, \overline{\mathrm{~g}}_{\mathrm{i} 2}, \overline{\mathrm{~g}}_{\mathrm{i} 3}, \ldots \ldots, \overline{\mathrm{~g}}_{\mathrm{i} 12}
\end{aligned}
$$

By the ranking Algorithm, the above MOFLPP is transformed into a MOLPP is as follows:

Maximize $Z_{1}=f_{11} x_{1}+f_{12} x_{2}+\ldots \ldots+f_{1 n} x_{n}$
Minimize $Z_{2}=f_{11} x_{1}+f_{12} x_{2}+\ldots \ldots+f_{1 n} x_{n}$

Subject to,
$2\left[\left(\mathrm{a}_{\mathrm{i} 11} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{i} 11} \mathrm{x}_{2}+\ldots \ldots+\mathrm{a}_{\mathrm{in} 1} \mathrm{x}_{\mathrm{n}}\right)+\left(\mathrm{a}_{\mathrm{i} 16} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{i} 26} \mathrm{x}_{2}+\ldots\right.\right.$
$\left.\ldots .+\mathrm{a}_{\text {in6 }} \mathrm{x}_{\mathrm{n}}\right)+$
$\left(a_{i 17} x_{1}+a_{i 27} x_{2}+\ldots \ldots+a_{i 17} x_{n}\right)+\left(a_{i 112} x_{1}+a_{i 212} x_{2}+\ldots\right.$
$\left.\left.\ldots+\mathrm{a}_{\mathrm{in} 12} \mathrm{X}_{\mathrm{n}}\right)\right]$
$+6\left[\left(\mathrm{a}_{\mathrm{i} 12} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{i} 22} \mathrm{x}_{2}+\ldots \ldots+\mathrm{a}_{\mathrm{in} 2} \mathrm{x}_{\mathrm{n}}\right)+\left(\mathrm{a}_{\mathrm{i} 13} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{i} 23} \mathrm{x}_{2}+\right.\right.$.
$\left.\ldots .+\mathrm{a}_{\mathrm{in} 3} \mathrm{x}_{\mathrm{n}}\right)+$
$\left(\mathrm{a}_{\mathrm{i} 14} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{i} 24} \mathrm{x}_{2}+\ldots \ldots+\mathrm{a}_{\mathrm{in} 4} \mathrm{x}_{\mathrm{n}}\right)+\left(\mathrm{a}_{\mathrm{i} 19} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{i} 29} \mathrm{x}_{2}+\ldots\right.$
$\left.\ldots+\mathrm{a}_{\mathrm{in} 9} \mathrm{x}_{\mathrm{n}}\right)+$
$\left(a_{i 110} x_{1}+a_{i 210} x_{2}+\ldots \ldots+a_{\text {in10 }} x_{n}\right)+\ldots \ldots+\left(a_{\text {in11 }} x_{1}+\right.$ $\left.\left.\mathrm{a}_{\text {in11 }} \mathrm{x}_{2}+\ldots \ldots+\mathrm{a}_{\mathrm{in11}} \mathrm{x}_{\mathrm{n}}\right)\right]$
$+5\left[\left(\mathrm{a}_{\mathrm{i} 15} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{i} 25} \mathrm{x}_{2}+\ldots \ldots+\mathrm{a}_{\mathrm{in} 5} \mathrm{x}_{\mathrm{n}}\right)+\left(\mathrm{a}_{\mathrm{i} 18} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{i} 28} \mathrm{x}_{2}+\right.\right.$
$\ldots . . .+\mathrm{a}_{\text {in8 }} \mathrm{X}_{\mathrm{n}}$]
$\leq 2 \mathrm{~g}_{\mathrm{i} 1}+6 \mathrm{~g}_{\mathrm{i} 2}+6 \mathrm{~g}_{\mathrm{i} 3}+6 \mathrm{~g}_{\mathrm{i} 4}+5 \mathrm{~g}_{\mathrm{i} 5}+2 \mathrm{~g}_{\mathrm{i} 6}+2 \mathrm{~g}_{\mathrm{i} 7}+5 \mathrm{~g}_{\mathrm{i} 8}+6 \mathrm{~g}_{\mathrm{i} 9}$ $+6 \mathrm{~g}_{\mathrm{i} 10}+6 \mathrm{~g}_{\mathrm{i} 11}+2 \mathrm{~g}_{\mathrm{il2}}$
$\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots ., \mathrm{x}_{\mathrm{n}} \geq 0, \mathrm{i}=1,2,3, \ldots \ldots . ., \mathrm{m}-$
Using (${ }_{*}$), this can be converted into a single objective problem subject to the constraints with transformed crisp number coefficients and hence solved accordingly.

Similarly, multi - objective problems with more than two objectives can also be solved using the above procedure, here in the very first stage itself the problem is transformed into a crisp problem and afterwards there will be no more fuzziness in the constraints as well as in the problem.

Simplex Method Algorithm

Step 1: Determine a starting basic feasible solution.
Step 2: Select an entering variable using the optimality condition Stop if there is no entering variable; the last solution is optimal. Else, go to Step 3.
Step 3: Select a leaving variable using the feasibility condition.

Step 4: Determine the new basic solution. Go to Step 2.

Numerical Example

Consider,
Max $Z=50 x_{1}+80 x_{2}$
$\tilde{\mathrm{a}}_{11} \mathrm{X}_{1}+\tilde{\mathrm{a}}_{12} \mathrm{X}_{2} \leq \overline{\mathrm{g}}_{1}$
$\tilde{\mathrm{a}}_{21} \mathrm{X}_{1}+\tilde{\mathrm{a}}_{22} \mathrm{X}_{2} \leq \overline{\mathrm{g}}_{2}$
where
$\tilde{\mathrm{a}}_{11}=(100,30,60,110,70,200,200,105,50,120,90$, 65)
$\tilde{a}_{12}=(160,100,140,50,180,150,150,170,40,200$, 70, 90)
$\tilde{\mathrm{a}}_{21}=(100,150,60,90,170,300,300,190,110,80,50$, 200)
$\tilde{a}_{22}=(180,50,120,70,90,100,100,110,200,60,80$, 40)
$\overline{\mathrm{g}}_{1}=(800,1400,400,600,1300,1000,1000,700,900$, 1600, 1200, 1100)
$\overline{\mathrm{g}}_{2}=(500,1000,1100,650,1250,800,1500,1500$, $600,1300,400,700$)

Subject to constraints
$2\left(100 \mathrm{x}_{1}+160 \mathrm{x}_{2}\right)+6\left(30 \mathrm{x}_{1}+100 \mathrm{x}_{2}\right)+6\left(60 \mathrm{x}_{1}+140 \mathrm{x}_{2}\right)+$ $6\left(110 x_{1}+50 x_{2}\right)+$
$5\left(70 \mathrm{x}_{1}+180 \mathrm{x}_{2}\right)+2\left(200 \mathrm{x}_{1}+150 \mathrm{x}_{2}\right)+2\left(200 \mathrm{x}_{1}+150 \mathrm{x}_{2}\right)$ $+5\left(105 x_{1}+170 x_{2}\right)+$
$6\left(50 \mathrm{x}_{1}+40 \mathrm{x}_{2}\right)+6\left(120 \mathrm{x}_{1}+200 \mathrm{x}_{2}\right)+6\left(90 \mathrm{x}_{1}+70 \mathrm{x}_{2}\right)$ $+2\left(65 x_{1}+90 x_{2}\right)$
$\leq(800+1400+400+600+1300+1000+1000+$ $700+900+1600+1200+1100)$
$2\left(100 x_{1}+180 x_{2}\right)+6\left(150 x_{1}+50 x_{2}\right)+6\left(60 x_{1}+120 x_{2}\right)+$ $6\left(90 x_{1}+70 x_{2}\right)+$
$5\left(170 \mathrm{x}_{1}+90 \mathrm{x}_{2}\right)+2\left(300 \mathrm{x}_{1}+100 \mathrm{x}_{2}\right)+2\left(300 \mathrm{x}_{1}+100 \mathrm{x}_{2}\right)$ $+5\left(190 \mathrm{x}_{1}+110 \mathrm{x}_{2}\right)+$
$6\left(110 x_{1}+200 x_{2}\right)+6\left(80 x_{1}+60 x_{2}\right)+6\left(50 x_{1}+80 x_{2}\right)$ $+2\left(200 x_{1}+40 x_{2}\right)$
$\leq(500+1000+1100+650+1250+800+1500+$
$1500+600+1300+400+700)$
$\operatorname{Max} Z=50 x_{1}+80 x_{2}$
Subject to constraints
$4765 \mathrm{x}_{1}+6450 \mathrm{x}_{2} \leq 12000$
$\mathrm{x}_{1}+5320 \mathrm{x}_{2} \leq 11300$

SIMPLEX METHOD

Step 1

		$\mathbf{C}_{\mathbf{j}}$	$\mathbf{5 0}$	$\mathbf{8 0}$	$\mathbf{0}$	$\mathbf{0}$	
$\mathbf{C}_{\mathbf{B}}$	$\mathbf{X}_{\mathbf{B}}$	\mathbf{B}	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	RATIO
0	$\mathrm{~S}_{1}$	12000	4765	6450	1	0	$12000 / 6450 \leftarrow$
0	$\mathrm{~S}_{2}$	11300	6760	5320	0	1	$11300 / 5320$
Z_{j}		0	0	0	0	0	
$\mathrm{C}_{\mathrm{j}}-\mathrm{Z}_{\mathrm{j}}$		-	50	$80 \uparrow$			

Step 2

Enter X_{2} and skip S_{1}

		C_{j}	50	80	0	0	
$\mathrm{C}_{\text {B }}$	X_{B}	B	X	X_{2}	S_{1}	S_{2}	RATIO
80	X_{2}	$\begin{aligned} & \hline 12000 \\ & / 6450 \end{aligned}$	$\begin{aligned} & \hline 4765 \\ & / 6450 \\ & \hline \end{aligned}$	1	$\begin{array}{\|c\|} \hline 1 \\ / 6450 \\ \hline \end{array}$	0	
0	S_{2}	$\begin{array}{\|c\|} \hline 9045000 \\ / 6450 \end{array}$	$\begin{gathered} 18252200 \\ / 6450 \end{gathered}$	0	$\begin{array}{\|c} -5320 \\ / 6450 \end{array}$	1	
Z_{j}		148.83	59.10	80	0.01	0	
$\mathrm{C}_{\mathrm{j}}-\mathrm{Z}_{\mathrm{j}}$		148.83	-9.10	0	-0.01	0	

Maximize $Z=148.83$ at $x_{1}=0 ; x_{2}=1.86$
Similarly,
We can calculate Minimize $\mathrm{Z}=(-$ Maximize Z$)$
Therefore,
Minimize $Z=84$ at $x_{1}=1.67 ; x_{2}=0$

GRAPHICAL METHOD

Maximize $\mathrm{Z}=50 \mathrm{x}_{1}+80 \mathrm{x}_{2}$
Subject to constraints
$4765 \mathrm{x}_{1}+6450 \mathrm{x}_{2} \leq 12000$
$6760 \mathrm{x}_{1}+5320 \mathrm{x}_{2} \leq 11300$

Solution:

Given: $\operatorname{Max} \mathrm{Z}=50 \mathrm{x}_{1}+80 \mathrm{x}_{2}$
Subject to constraints

$$
\begin{align*}
& 4765 x_{1}+6450 x_{2}=12000 \\
& 6760 x_{1}+5320 x_{2}=11300 \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& \text { Put } x_{1}= 0 \text { in }(1) \rightarrow \\
& 6450 x_{2}=12000
\end{aligned}
$$

$$
X_{2}=1.86
$$

$$
\mathrm{A}(0,1.86)
$$

Put $x_{2}=0$ in (1)

$$
\begin{gathered}
4765 \mathrm{x}_{1}=12000 \\
\mathrm{X}_{1}=2.51 \\
\mathrm{~B}(2.51,0)
\end{gathered}
$$

Put $\mathrm{x}_{1}=0$ in (2) \rightarrow
$5320 \mathrm{x}_{2}=11300$
$X_{2}=2.12$

$$
\mathrm{C}(0,2.12)
$$

Put $\mathrm{x}_{2}=0$ in $(2) \rightarrow$

$$
\begin{gathered}
6760 \mathrm{x}_{1}=11300 \\
\mathrm{X}_{1}=1.67 \\
\mathrm{D}(1.67,0)
\end{gathered}
$$

$\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}\right)$	$\operatorname{Max} \mathbf{Z}=\mathbf{5 0} \mathbf{x}_{\mathbf{1}}+\mathbf{8 0} \mathbf{x}_{\mathbf{2}}$
$\mathrm{A}(0,0)$	$\operatorname{Max} Z=0$
$\mathrm{~B}(0,1.86)$	$\operatorname{Max} \mathrm{Z}=148.8$
$\mathrm{C}(1.67,0)$	$\operatorname{Min} \mathrm{Z}=83.55$

COMPARISON OF RESULT OBTAINED BY SIMPLEX METHOD AND GRAPHICAL METHOD

Graphical Method	Simplex Method
Maximize $\mathrm{Z}=148.8$ at	Maximize $\mathrm{Z}=148.83$ at
$\mathrm{x}_{1}=0$ and $\mathrm{x}_{2}=1.86$	$\mathrm{x}_{1}=0$ and $\mathrm{x}_{2}=1.86$
Minimize $\mathrm{Z}=83.55$ at	Minimize $\mathrm{Z}=84$ at
$\mathrm{X}_{1}=1.67$ and $\mathrm{x}_{2}=0$	$\mathrm{X}_{1}=1.7$ and $\mathrm{x}_{2}=0$

RESULT

From the above table, we have obtained the correct value from both Simplex Method and Graphical Method. By comparing the two methods Simplex Method is the best one in which the results are more accurate.

REFERENCES

1. [1] Zadeh,L.A., (1965) "Fuzzy Sets", Information and Control., No. 8 pp.338-353.
2. [2] H.J.Zimmermann, "Fuzzy Set Theory and Its Applications", Fourth Edition Springer (2011).
3. Rajarajeswari. P and SahayaSudha. A, Ranking of Hexagonal Fuzzy Numbers for solving Multi - objective Fuzzy Linear Programming Problem vol.84, No.8, 2013, 14-19.
4. Jatinder Pal Singh and NehaIshesh Thakur; Ranking of Generalized Dodecagonal Fuzzy Numbers using centroid of centroids, vol.10, No.2, 2015, 191 - 198.
5. Rajarajeswari. P, A.S.Sudha and R.Karthika, A new operation on Hexagonal Fuzzy Number, 3(3) (2013) 15 - 26.
6. Dr. S. Chandrasekaran, G.Gokila and Juno Saju; Ranking of Octagonal Fuzzy Numbers for solving Multi-objective Fuzzy Linear Programming Problem with Simplex Method and Graphical method, Vol.1, No.5, 2015, $504-515$.
7. Sophiya Porchelvi. R, Nagoorgani. A, Irene Hepzibah. R; An Algorithmic Approach to Multi objective Fuzzy Linear Programming Problems.
8. Tanaka.H, Asai. K, Fuzzy Linear Programming Problems with fuzzy numbers, fuzzy sets and systems 13 (1984), 1 - 10.
9. S.H.Nasseri, A new method for solving fuzzy linear programming, Applied Mathematical sciences, 2(2008), $37-46$.

[^0]: * Head \& Asst. Professor, P. G. and Research Department of Mathematics, St. Joseph's College of Arts and Science (Autonomous), Cuddalore, Tamil Nadu, India
 ** Research Scholar, P. G. and Research Department of Mathematics, St. Joseph’s College of Arts and Science (Autonomous), Cuddalore, Tamil Nadu, India

